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Structured Mixed Phase is Favored in Neutron Stars
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We give a general thermodynamical argument showing
that in neutron stars, the Coulomb structured mixed phase
is always favored for any first order phase transition involv-
ing systems in equilibrium with baryon number and electric
charge as the two independent components. This finding is
likely to have important consequences for many neutron star
properties, e.g., glitch phenomena, transport and superfluid
properties, r-mode instabilities, and the braking index.
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A number of phase transitions may take place in neu-
tron stars. Described in most detail is the first order nu-
clear liquid-gas transition in the inner crust of a neutron
star, where nuclei with different shapes are in equilibrium
with a neutron gas [1,2]. Above the nuclear saturation
density, phase transitions involving, for instance, quark
matter, pion, and kaon condensation have been suggested
and described, see e.g., Ref. [3] for an overview.

Before 1992, local charge neutrality was imposed on all
the possible phase transitions above saturation density,
leaving the systems with only one independent compo-
nent, namely the baryon number. This treatment made
any first order transition resemble, e.g., the water-ice
transition. However, in 1992 it was pointed out by Glen-
denning [4] that because neutron star matter has two in-
dependent components, namely the baryon number and
the electric charge, charge neutrality must be applied as
a global and not a local condition. Gibbs general condi-
tions for thermodynamic equilibrium for both chemical
potentials (usually taken to be the neutron and electron
chemical potentials) cannot be satisfied otherwise. As a
consequence of this, the charge does not vanish identi-
cally; rather, there results a nonvanishing charge density
of opposite sign for each bulk phase [5].

A first order transition with multiple independent com-
ponents behaves qualitatively differently from a single
component one as seen in Fig. 1. For a one-component
system, the transition takes place at a constant pressure
where the two phases, having different densities, for all
proportions are in equilibrium. The equilibrium pressure
is found through a Maxwell construction. Systems with
two components have an additional degree of freedom,
which means the proportions of the two phases in equi-

librium vary as a function of the pressure. The phases
still have different densities, but the densities are now
also functions of the pressure [4,6,7]. Mixtures of two
miscible liquids in equilibrium with their vapor phase are
well described examples from physical chemistry [6,8]. In
a neutron star this means that a two-component phase
transition may have a considerable radial extent in con-
trast to a one-component transition, which takes place
at a single radial point in the star, the point where the
pressure of the two phases are equal. This region of two
coexisting phases in equilibrium is usually referred to as
the mixed phase.

In [4] surface and Coulomb effects were neglected in the
description of the mixed phase, although it was pointed
out that their inclusion would result in a Coulomb lattice,
analogous to the lattice resulting from the nuclear liquid-
gas transition in the inner crust of a neutron star. Such
a structured mixed phase above the saturation density
was first studied in [9] for the deconfinement transition.
It was there concluded that the mixed phase may not be
energetically favored, compared to the locally charge neu-
tral, one-component system, if the surface and Coulomb
energies are ‘sufficiently large’.

We show in the following that for any first order phase
transition of a two-component system of nuclear matter
in full thermodynamic equilibrium, the energy (including
Coulomb and surface energies) of this system is always
smaller than the energy of the same system where one
component is frozen out [10]. For a neutron star, the
important implication is that for matter in equilibrium
there will always be a structured mixed phase if any first
order phase transition takes place in its dense interior.

Gibbs conditions for thermodynamical equilibrium be-
tween two phases (I and II) with n independent compo-
nents separated by an arbitrary boundary are [11,12]

T I = T II

µI
i = µII

i i = 1, 2, ..., n

P I(µI
i , T

I) = P II(µII
i , T II) + σ

(

1

R1

+
1

R2

)

+ ..., (1)

where T is the temperature, µi is the chemical potential
of the i’th independent component, P is the pressure, σ

is the surface tension, and R1 and R2 are the principal
curvature radii (higher order corrections like curvature
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effects have not been explicitly included in the pressure
equilibrium condition). These conditions describe ther-
mal, chemical, and mechanical equilibrium, respectively.
In addition the energy (as well as the free energies) is
at a minimum for a system in equilibrium. All these
conditions are direct consequences of the second law of
thermodynamics. In the case of a neutron star, Gibbs
conditions have to be solved consistently with the con-
dition of charge neutrality, which as emphasized, cannot
be imposed as a condition of local vanishing charge den-
sity else there are too many unknowns for the number of
equations.

Cold nuclear matter in a single phase in equilibrium is
of course electrically neutral. β-equilibrium ensures that
the sum of the proton and electron chemical potentials
equals the chemical potential of the neutron, µn = µp+µe

(the neutrinos escape the system freely). This local
charge neutrality requires the electron and proton densi-
ties to be equal in bulk. Earlier, local charge neutrality
was likewise imposed on both phases of the system dur-
ing a phase transition. This assumption has the effect
of freezing out the electric charge component and leav-
ing the baryon number as the single independent compo-
nent. The Maxwell construction ensures pressure equi-
librium and chemical equilibrium between the baryons
across the phase boundary for such a phase transition.
However, the electron chemical potential is generally dis-
continuous across the phase boundary.

FIG. 1. The pressure as a function of the baryon density in
the mixed phase region of a two-component system. The solid
curve corresponds to the two-component system, whereas the
dotted curve corresponds to the same system with the electric
charge component frozen out. The actual numbers are for a
system where the first order phase transition is to a kaon
condensate [13].

In the current picture of the bulk phases, the local
charge neutrality of both phases is relaxed to a global

charge neutrality condition, which allows the system to
freely explore the additional degree of freedom in a sys-
tem with two independent components. Compliance with
Gibbs phase equilibrium conditions for both chemical po-
tentials naturally result in a nonvanishing charge density
for each phase. The normal nuclear matter phase will
be positively charged, and thus more isospin symmetric;
whereas the high density phase (e.g., quark matter) will
be negatively charged, and partly replace electrons (and
muons) as global neutralizing agents. The bulk energy
of the one-component system lies above the bulk energy
of the mixed phase system if Coulomb and surface ener-
gies are neglected, since the charge neutrality constraint
is relaxed in the latter approach [4].

FIG. 2. The solid curve is a schematic plot of the dif-
ference in energy density between a Maxwell system and the
corresponding bulk mixed phase system as a function of the
baryon density in units of the saturation density. The two
marks represent the densities of the low and high density
phase at the constant transition pressure of the Maxwell sys-
tem, between which the average baryon density varies linearly
according to ρ = χρI +(1−χ)ρII , where χ is the volume frac-
tion of phase I [15]. The curves a, b, and c are schematic plots
of the sum of Coulomb and surface energies in the mixed phase
region corresponding to the three possible scenarios described
in the text.

In the current picture of the structured mixed phase
as presented in Ref. [9], the mixed phase is energetically
favored only if the sum of Coulomb and surface energies
in the mixed phase is smaller than the gain in bulk en-
ergy between the two systems. A schematic plot of this
comparison is shown in Fig. 2 (see also the figure in [9]
or Fig. 30 in [3]). There are three possible scenarios, cor-
responding to the three curves of Coulomb and surface
energies: a, the structured mixed phase is favored in the
whole bulk mixed phase region, b, it is favored in some
regions of the bulk mixed phase, c, it is not favored any-
where. The properties of the equations of state including
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surface and screening effects for the two phases determine
which scenario is valid for the phase transition in ques-
tion. Screening effects reduce the Coulomb energy and
will play an increasingly important role with increasing
size of the charged structures. Screening lengths for dif-
ferent components have been estimated, the ranges are
from about 5 fm to 13 fm. Structures that are smaller
than the screening lengths will have almost uniform par-
ticle densities within each phase and a nonvanishing local
charge density. On the other hand, the larger the struc-
tures are compared to the screening lengths, the more the
system will resemble two electrically neutral bulk phases
[9,3].

The new picture we present is based on the thermody-
namical equilibrium conditions described in Eq. (1) and
below. These conditions are direct consequences of the
second law of thermodynamics and therefore have general
validity. The standard Maxwell construction can only en-
sure mechanical equilibrium and one chemical potential
to be in equilibrium across a phase boundary. The other
chemical potential will generally be discontinuous across
the boundary. Thus, if one component is frozen out by
imposing constraints on a system with two independent
components, this system cannot be in full thermodynami-

cal equilibrium. Therefore the (free) energy of such a sys-
tem is not at a minimum, and there must be another sys-
tem in thermodynamical equilibrium in which the energy
is a global minimum. This statement is valid over the
whole range of the mixed phase region and not only at the
pressure Pt, where the actual discontinuity in one chemi-
cal potential is. To see this consider the system (I) in the
neutron star with the global energy minimum at Pt and
assume that the single phase (II) with the imposed local
charge neutrality is preferred at an infinitesimal smaller
(or larger) pressure. There will be a phase boundary be-
tween these phases, but they will have different chemical
potentials and therefore will only be in mechanical equi-
librium. Thus there must be a system different from (II)
at this pressure which is in thermodynamical equilibrium
with (I) and being at the global energy minimum. This
argument can be repeated until the whole mixed phase
region has been spanned. Notice, that the above argu-
ment is valid irrespective of whether the central pressure
of the neutron star is larger than Pt of the Maxwell sys-
tem or not. Therefore, a two-component system with
one component frozen out cannot be at a global energy
minimum since it is not in full thermodynamical equi-
librium. The system with the global energy minimum,
in the pressure region where the equations of state indi-
cate a two-phase equilibrium is possible, must therefore
be the mixed phase with the particular Coulomb lattice
structure which has the lowest energy, since this is the
only system which is in full compliance with Gibbs equi-
librium conditions.

Screening and surface effects do not change the above
conclusion. Phase boundaries are inevitable in two-phase

systems in equilibrium, and likewise are screening effects
an integral part of all charged systems in equilibrium,
whether the systems consist of a single phase or two
(or more) phases separated by a phase boundary. In
the latter case screening and surface effects across the
phase boundary become inseparable. Charged systems
larger than the typical screening length can reduce their
Coulomb energy by reducing the local charge density.
But this does not imply that these large systems will gen-
erally resemble that of a one-component system with the
electric charge frozen out. As long as the charge density
does not vanish identically everywhere in the systems,
the Wigner-Seitz cells will survive [14]. On this basis the
scenarios b and c in Fig. 2 can be excluded for any first
order phase transition of such two-component systems in
full thermodynamical equilibrium.

For a given phase transition a figure like Fig. 2 is very
useful though. If the model describing the structured
mixed phase has an energy corresponding to scenario b

or c, we can immediately conclude that the model does
not give a correct description, since we already know the
Maxwell-like, one-component approximation represents
an excited state. This is a powerful test of whether the
approximations in the treatment of Coulomb and surface
energies are good enough. An important implication is
that a rough upper limit on the surface tension in a given
model can be estimated from this comparison. However,
one should be careful not to use (reasonable) guesses for
the value of the surface tension to draw conclusions about
the physical possibilities of the system as it was done in
[9]. We note that in the description of the first order
nuclear liquid-gas transition, the findings of Ref. [2] are
that the structured mixed phase is indeed favored except
close to the upper end of the mixed phase region. Thus,
their model gives at least a physically sound description
of the structures in most of the mixed phase region except
close to its upper end where the details of the model, here
becoming increasingly important, can be improved upon.

There are situations where scenario b, if it had been fa-
vored, could have led to buoyancy instabilities analogous
to a situation where mercury is placed on top of liquid
water. Assume for example that the structured mixed
phase for the system shown in Fig. 1 is favored only
if the pressure is less than 65 MeV/fm3 corresponding
to baryon densities below 0.48 fm−3. Since hydrostatic
equilibrium requires that the pressure increases monoton-
ically from the surface to the center of the neutron star,
there will be a region in the star where a denser struc-
tured mixed phase is located further from the center than
a less dense Maxwell-like phase. This is a gravitationally
unstable situation commonly seen in some stars. A sim-
ilar situation arises within the structured mixed phase,
but here the two phases in each Wigner-Seitz cell have
a non-vanishing charge density, and the Coulomb force
which is much stronger than gravity stabilizes the cell
and secure that it remains intact.
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In specific studies of possible phase transitions, reason-
able models for the equations of state of the phases are
crucial. For some choices of models (or parameter values
within a model) it may happen that it is not possible
to assure full compliance with Gibbs equilibrium con-
ditions, even if a Maxwell construction, indicating the
transition is first order, can be found. Examples relat-
ing to kaon condensation can be found in [16]. Since
the Maxwell construction represents an excited state in
a two-component first order phase transition, the model
must be unphysical since by construction it cannot de-
scribe the system in full thermodynamical equilibrium.
We note that the authors of Ref. [16] are aware of this.

There is a single case where the transition can be first
order without there being mixed phase. If it happens that
also the electron chemical potential is continuous at the
constant pressure transition of the Maxwell-like system,
then there will be no mixed phase (or more precise, the
radial extent of the mixed phase region has shrunk to
nothing). But this is by no means related to screening
effects or energy considerations between the Maxwell-like
system and the mixed phase. It would be a completely
coincidental property of the two phases and the equations
of state describing them, and therefore it has vanishing
probability.

We have, based on Gibbs equilibrium conditions, pre-
sented a new picture showing that in neutron stars, the
structured mixed phase will always be energetically fa-
vored for arbitrary first order phase transitions involving
systems in full thermodynamical equilibrium with baryon
number and electric charge as the two independent com-
ponents. Therefore, models that impose local charge neu-
trality on such two-component systems and thereby make
the phase transition resemble that of one-component sys-
tems cannot be physically sound. Additionally, we have
shown a way of checking whether the applied models are
physically reasonable.

This conclusion is likely to have important conse-
quences for a broad range of neutron star properties,
e.g., glitch phenomena, transport and superfluid prop-
erties, r-mode instabilities, and the braking index, see
[3] and references therein. Details concerning these phe-
nomena depend of course on the specific properties of any
first order phase transition taking place in the dense in-
terior of neutron stars, especially the radial extent of the
mixed phase region, the density at which it starts form-
ing, and whether unsurmountable energy barriers prevent
the neutron star matter from actually achieving its equi-
librium configuration.
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